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Abstract. The singular part of the hydrogen dipole matrix element is exactly calculated. 
The result can be of interest for both quantum electrodynamics (bremsstrahlung, Rayleigh 
scattering) and quantum optics (above-threshold ionisation). Comparison with approxi- 
mate methods is performed. 

1. Introduction 

The hydrogen atom was one of the first problems solved within the framework of 
quantum mechanics. Its properties, such as the bound-continuum structure of the 
energy spectrum, are the subject of many fundamental textbooks. 

On the other hand, an electron in the hydrogen atom when interacting with the 
electromagnetic field undergoes transitions between different atomic states. In many 
physical phenomena (such as bremsstrahlung, Rayleigh scattering, above-threshold 
ionisation) [ 1-31 these transitions may also occur between two continuum states. The 
rate of transition is governed (in the dipole approximation) by the dipole matrix 
element (DME) (E, 1, mlerlE', l ' ,  m'). 

In 1925 Gordon [4] found an exact formula for the DME (both in spherical and 
cylindrical coordinates) expressed in terms of some numerical factors multiplied by 
the hypergeometric function. The characteristic property of this formula is that when 
the initial and final values of energies coincide, i.e. E = E', the DME becomes infinite 
(this is also referred to as the diagonal singularity). The exact form of this singularity 
was not important in [4], because of the type of physical problems considered. In 
most calculations based on the perturbational approach the exact form of this singularity 
was not important and the off-diagonal values of the DME were sufficient. Recently, 
however, there appeared a new range of effects such as, for example, cross sections 
of multiphoton ionisation (including above-threshold ionisation) for which the knowl- 
edge of these diagonal singularities becomes necessary [5]. It is the subject of this 
paper to analyse these singularities. We present an exact method of analytical regulari- 
sation of the DME (in our paper we will restrict ourselves to the case of the angular 
momentum basis ( E ,  1, m) which is determined by the following quantum numbers: 
energy, angular momentum and its z component). Thus we establish the convenient 
groundwork for analytical calculations of various integrals, important in applications, 
containing the Dm-especially in the case when the integration domain meets a 
singularity at the coinciding energies E = E' .  

The paper is organised as follows. In the appendix we briefly derive the recurrence 
(similar to the one derived by Gordon in [4]) which forms the basis of our method. 
In § 2 using this recurrence we calculate the singular part of the DME. 
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2. Singular part of the hydrogen DME 

In this section we calculate the singular part of the DME using the recursion scheme 
derived in the appendix. We will restrict ourself to the radial part of the DME, since 
the angular one does not contain any singularities. The radial part of the DME takes 
the following form [6]: 

where 

( 2 k ) ' + ' e x p ( ~ / 2 k )  ! X i k / = -  
(21+ l ) !  

1 

and the last factor on the right-hand side of (2.1) was already defined in (A l )  and is 
equal to 

- -21(21+ 1) - 
k2 

One can check that the last term on the right-hand side actually appears while 
considering the normalisation condition of the wavefunction. Thus we can immediately 
write its contribution to the DME: 

Let us define !&kk'l= m k k * f  -mYJSf. Then the remaining part in our recursion formula 
may be written as 

1 

i ,  ( k k  [ l o (  k k 
1 

x J &  f + l + - , l + _  +J:ipE I - l+ - , f+ ,  

Now we apply formulae (A5) and (AS) to obtain the following expression: 

(2.4) 
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and in a similar way: 

J i f E ( l - l + x ,  i 

1 
f (  k’2 - k2) + iek + E’ 

+ 2 ~ ( 1 - 1 + $ J $ j ~ ( l + t ,  l + $ ) ] .  

- - 

The rightmost terms proportional to E in (2.5) and (2.6) vanish in 
Therefore we obtain 

(2.6) 

the limit E + 0. 

- i k + 2 i ~ / k ’  i 
J$:c( I +  1 +%, 

i )  ik+2e(l- i /k)  I 
J:fE( +k’ =f(k,2- k2) + iEk+ E JFE( 1 - 1 +:, k k’ (2.7) 

f(k’2-k2)-iiEk’-&2 

1 

where, according to the definition (A2), 

J$:‘( 1 + 1 +;, i 1 

1 1 -kk’ 
X F  1 + 1 + - , 1 + ~ , 2 1 ,  ( k E2+f(k-k’)2 

and correspondingly 

Now we do the most tedious part of our work; namely we expand the hypergometric 
function for E << k, k’ and (k’ - kl<< k, k‘ [7] and extract the singular part. (By definition 
the singular part is the one that diverges in the limit limE+o iimkf,k or limk.+k limE+o.) 
Here we quote only the final result: 

x [ 1 -?(In k - y + f ($ ( I  + 1 +;) + i,b ( I  + 1 -;)))I 
X 1 +..} (2.10) 

[ E  + fi( k’ - k)12 

where + ( z )  =F’(z)/F(z) and y =OS77 21 . .  . is the Euler constant. In the formula 
(2.10) we have omitted all terms which either vanish in the limit E + 0 as, for example, 
E’/[E+fi(k-k’)]* for n z = l  or are regular as (k-k’)” / [E+t i (k-k’) ]2for  n B 2 .  The 
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last step is to identify the generalised functions in (2.10). Before we do this, we repeat 
here the well known formulae: 

k ’ -  k 
lim 
E + ~  [ E  *si( k ‘ -  k ) ] ’  

lim 
€.+o [ ~ * i i ( k ’ -  k ) ] ’  1 1 

(2.11) 

(2.12) 

where P ( l / (k ’ -k ) )  denotes the principal value of the integral and P(l / (k’-  k)’ )  is 
defined as follows: 

Thus, considering (2.10) and performing the limit E + 0 we obtain 

+i k2 [In k - y +; (+(I + 1 +;) + +(I+ 1 -;))I} + cc. (2.14) 

The formulae (2.3), (2.10) and (2.14) are the main results of our paper. We recall 
that !Ekksl = !E~~), ,+fikkrl.  Let us stress that the main singularity, i.e. the term propor- 
tional to the S ’ ( k ’ -  k )  in (2.14), can be obtained from approximate calculations, when 
we replace the exact wavefunctions by their asymptotic expansion (this result was first 
obtained in [8]). Since this property also holds in the case of the normalisation constant 
[9] (which is left as an exercise for the interested reader) it is possible that the leading 
singularity in these types of integrals can always be easily extracted by simplification 
based on replacing the integrand by its expansion near the singular point at infinity. 
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Appendix 

Here we will present the recursion relations between different J;,$(a, CY’) where 
JS;PE(a, a’) is defined as follows: 

J;,:(a, a’) = exp(-sz) e x p [ - ~ i ( k + k ’ ) ~ l z ~ - ’ + ~ F ( a ,  y, ikz)F(a’ ,  y-p,  ik’z) dz 

(AI)  

where y + s > O  and F is the confluent hypergeometric function. Our formula is a 
simple generalisation of the result obtained by Gordon [4] for the case of regularised 
integrals. We will follow closely the idea presented in [4]. 

I: 



Singular part of the hydrogen dipole matrix element 2313 

The starting point of our recurrence can be evaluated directly with the following 
result: 

J;,:(CY, a‘) = r ( y ) [ E + $ ( k +  k ’ ) ~ ~ + ~ ’ - ~  [ ~ + $ ( k ’ - k ) ] - ~ [ ~  -$i(k’-k)]-” 

where r denotes the gamma function and F is the hypergeometric function. 
Next we remind ourselves of the method of reducing the value of p and s in (Al)  

x { [ i k ( % y - a ) - i k f ( f y - a ’ ) - s ( ~ + i k ’ ) - ~ ( y + s - 2 a ’ ) I ~ S ; , : ( a ,  a’)  

-2&a’J;,?(a, a’- 1 ) +  s( y +  s - 1 -2a’)J;;13°(a, a’) 

+ 2 s a ‘ J ; 3 a ,  a’-  l)}. (A4) 

For application to the calculation of the DME only the case s = 0 appears. Then the 
above formula can be written in the following form: 

x {[ik(iy - a )  -ik’(fy - a’) - E ( Y  -2a’)]J$(a,  a’) 

-2Ea’JS;P(a, a’-  1)). (A5) 

In our paper we will also use a slightly different form of (A5) which is 

J5+l ,0  1 
a ( k ” -  k*)+i&k+ E *  

y,‘ ( a ,  a’)  = 

x {[ik(iy - a )  -ik’(fy - a’)+ S ( E  + i k ) +  E ( Y +  s - 2 a ) l  

x J;,: ( a ,  a ‘) + 2 m J 3  a - 1 ,  a’) - s ( y + s - 1 - 2a )J;;’xo( a, a’)  

- 2 s a J 7 3  a - 1, CY ’)} (A47 

1 
a( k ” -  k 2 )  + iEk + E *  

Jk:(a,  a’)  = 
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